R tools Code
Apirori Code:
install.packages("arules")
> library(arules)
> data(Groceries)
> transactions <- Groceries
> summary(transactions)
> itemFrequencyPlot(transactions, support=0.1, cex.names=0.8)
> itemFrequencyPlot(transactions, support=0.05, cex.names=0.8)
> itemFrequencyPlot(transactions,topN=20)
> rules <- apriori(Groceries, parameter =
list(support = 0.009, confidence = 0.25, minlen = 2))
> inspect(head(sort(rules, by="lift"),5))
> install.packages("arulesViz")
> library("arulesViz")
> plot(rules, measure=c("support", "confidence"), shading="lift", interactive=FALSE)
> milk.rules <- sort(subset(rules, subset = rhs %in% "whole milk"), by = "confidence")
> summary(milk.rules)
> inspect(milk.rules)
=====================================
NaivesBayes Code :
install.packages("e1071")
library(e1071)
data("iris")
head(iris)
tail(iris)
print(iris)
summary(iris)
index=sample(2,nrow(iris),prob=c(0.9,0.1),replace=TRUE)
set.seed(1234)
train=iris[index==1,]
train
summary(train)
test=iris[index==2,]
test
summary(test)
model=naiveBayes (Species~., data=train)
pred=predict(model,test)
table(pred)
table(test$Species,pred)
Comments
Post a Comment